1. Suppose f is a real-valued function on \mathbb{R} such that

$$|f(x) - f(y)| \leq (x - y)^2$$

for all $x, y \in \mathbb{R}$. Show that f is a constant function.

2. Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Then show that there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

3. Suppose $a \in \mathbb{R}$, f is a twice differentiable real-valued function on (a, ∞) , and M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively on (a, ∞) . Prove that

$$M_1^2 \leqslant 4M_0M_2.$$

4. Suppose f is differentiable on [a, b], f(a) = 0, and there is real number A such that $|f'(x)| \leq A|f(x)|$ on [a, b]. Prove that f(x) = 0 for all $x \in [a, b]$.

5. Recall that for a uniformly continuous function f on \mathbb{R} , we have

$$|f(x)| \leqslant A + B|x - x_0|$$

for some constants A, B depending on x_0 . Find a uniformly continuous function g on \mathbb{R} such that for all $x_0 \in \mathbb{R}$

$$|g(x)| \leq |g(x_0)| + B|x - x_0|$$

does not hold for any B.

6¹. Suppose f is a real analytic function on \mathbb{R} such that for each $x \in \mathbb{R}$, we have $n \in \mathbb{N}$ such that $f^{(n)}(x) = 0$. Show that f is a polynomial. *Hint*: Use Baire's Category Theorem.

¹Need not to be submitted