Assignment 8

1. Suppose f is a real-valued function on \mathbb{R} such that

$$
|f(x)-f(y)| \leqslant(x-y)^{2}
$$

for all $x, y \in \mathbb{R}$. Show that f is a constant function.
2. Suppose f is a real differentiable function on $[a, b]$ and suppose $f^{\prime}(a)<\lambda<$ $f^{\prime}(b)$. Then show that there is a point $x \in(a, b)$ such that $f^{\prime}(x)=\lambda$.
3. Suppose $a \in \mathbb{R}, f$ is a twice differentiable real-valued function on (a, ∞), and M_{0}, M_{1}, M_{2} are the least upper bounds of $|f(x)|,\left|f^{\prime}(x)\right|,\left|f^{\prime \prime}(x)\right|$, respectively on (a, ∞). Prove that

$$
M_{1}^{2} \leqslant 4 M_{0} M_{2}
$$

4. Suppose f is differentiable on $[a, b], f(a)=0$, and there is real number A such that $\left|f^{\prime}(x)\right| \leqslant A|f(x)|$ on $[a, b]$. Prove that $f(x)=0$ for all $x \in[a, b]$.
5. Recall that for a uniformly continuous function f on \mathbb{R}, we have

$$
|f(x)| \leqslant A+B\left|x-x_{0}\right|
$$

for some constants A, B depending on x_{0}. Find a uniformly continuous function g on \mathbb{R} such that for all $x_{0} \in \mathbb{R}$

$$
|g(x)| \leqslant\left|g\left(x_{0}\right)\right|+B\left|x-x_{0}\right|
$$

does not hold for any B.
6^{1}. Suppose f is a real analytic function on \mathbb{R} such that for each $x \in \mathbb{R}$, we have $n \in \mathbb{N}$ such that $f^{(n)}(x)=0$. Show that f is a polynomial. Hint: Use Baire's Category Theorem.

[^0]
[^0]: ${ }^{1}$ Need not to be submitted

